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Stability of a viscous fluid in an oscillating gravitational field
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The stability of the interface of a viscous incompressible fluid superimposed on a massless fluid is studied
for the case of an oscillating gravitational field. For the viscous case, the dispersion relation is shown to
represent an infinite determinant of the Hill type, which is investigated analytically. The method presented
allows one to find the whole dispersion curve of the instability and its asymptotics in an explicit form. The
stabilizing effect of the externally imposed oscillations leads to the appearance of stability windows on the
growth rate spectrum. lllustrations are given for the influence of all the parameters of the problem on this
effect.
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I. INTRODUCTION II. DISPERSION EQUATION FOR LINEAR INSTABILITY
GROWTH IN VISCOUS FLUID
The Rayleigh-TayloRT) instability was originally dis-
covered as the instability of the interface of two superim-

po_sed fluids in a grawtgtlonal fleld._TheoreUcaI Interest Ny em harmonically oscillating in a direction perpendicular to
this phenomenon t_oday IS rele}ted toits appearance in a NUNge jnterface. In practice, this situation can by realized by
ber of physical objecj[s both in space and Iabc_Jratory fIUIdﬁ)utting two liquids in a cylinder with rigid walls, and making
and plasmag1]. The influence of various physical param- s cylinder vibrate in the direction @. The corresponding
eters and processes on the RT growth rate often studied oy e fiment was described in RE8]. In the chosen frame of
Sl .“ght of finding a stabilizing effgct which leads to a reference the fluids are immobile as a whole, and the pres-
reduction of the valge.oj/,_ at least at given wavelengths. sure instantaneously compensates for the change of the ef-
One can note a similarity between the linear growth of RTfective acceleration field. The ax&is normal to the fluid

insta%ility ir; ircompressiblt_a fluids anhd the Imotiodn IOf an in- g rface, and the axes and Y are in the plane of the fluid
verted pendulunia conventional mechanical pendulum con-iie e o o pae = e |

sisting of a long rigid stick with a small heavy body attached For growth rates of the surface perturbatignexceeding

to its end. Indeed., the motion of an !ncompressmlg qu_|d , the forced oscillations effectively increase the initial grav-
over a mas;less mcompressuble m§d|um in a gravity fiel force g. Further analysis will be performed for the case
consists of interchanging the opposﬁe_volume parts acrosghen the instability boost at shorter wavelengths, corre-
the interface. Furthermore, the expressions for the CharaCteé'ponding to higher values of, is limited by the viscc;sity
|§t!c frequencies of the RToft(_an called mterchangenstg— Also, to avoid tedious calculations, we will examine the case
bility and the pendulum are alike;= Vgk andw= g/l (lis o1 5 heavy fluid superimposed over a massless one.

the length of the pendulum , _ For a viscous incompressible fluid in a noninertial frame
A well-known classic experiment for preventing an in- o reference

verted pendulum from falling was described in R&fl. The

idea of the experiment was to make the point of attachment dv vp ”

of the pendulum to vibrate with a rather small amplitugde — = — — +0+Qosct — VV, (1)

but with a high frequency). The essential point here is to dt p p

make the effective changing gravity fiefls= £,Q22 higher

than the original oneg. Further developing the analogy be- V.-v=0, (2

tween a pendulum of a fixed length and RT perturbations of

a fluid of a given wavelength, we can expect an analogoug/here we choosfg,sd = £, cos(t).

effect in the case of two incompressible fluids. The initial condition for Eqs(1) and (2) corresponds to
The present paper analyzes the possibility of a reductioghe equilibrium statery=0, or

of the instability growth rate in the region of intermediate

wavelengths for the case when the acceleration field is oscil-

lating. To obtain a basic notion of the effect, a simple case of P> Py

incompressible fluids is considered. The authors of R&f. i

already derived a dispersion relation for this stability prob- T

lem in the form of an infinite determinant. This determinant ﬁo,ﬂ

was further analyzed, mostly numerically, in order to find vscillations

stability boundaries. As opposed to R], here we propose 1 u

an analytical method which allows one to obtain an explicit \B

form of the dispersion relation and avoid a large amount of

numerical work. FIG. 1. General statement of the problem.

Figure 1 illustrates the statement of the problem. Two
incompressible nonmixing fluids are superimposed, both of

0Q)
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Po=plg+£Q? cog Q) ]z + Pey:- )

The boundary conditions are formulated as folldwé

v,
_p+2775 = ~ Pext» (4)
surface
v v v v
X + 2z =0 -y + 2z =0. (5)
9z ox 9z ay
surface surface

In a linear approximation Eq$l) and (2) yield v=wy+ v,
for small perturbations of the velocity, anu=py+ p; for
the pressure.

vy  Vpy 7
W__T_i_;Al' (6)
V-v;=0. (7

Taking the divergence of E@6) and taking into account Eq.

(7), we obtain

Ap,=0. 8

Since the equilibrium system is homogeneous in the plane
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Condition Reg,>0 is necessary for the perturbations to dis-
appear agz— — o,
The same calculations far, result in

k ekz

v Z)=v einZ—j — .
z,n,k( ) z,n,k pn,kp w—nQ

(14)

Thus all the expressions for the pressure and velocity com-
ponents are

o]
— Aot imQt ikx+kz
p,=e'* E € Pm,k€ )

y), we can make a Fourier transform over these variables. As

a result we will have corresponding Fourier components with k 1

the wave vectok= (k, k). In order to simplify our calcu-
lations further, let us change the directions of the axesad

y, so thatk=ke, and k=|k|. In other words, we are thus

eliminating the unnecessary variabjefrom our problem.

(15
m=—
VlX:eiwtn_iw ein().t Vx,n,keikx+qnz
+ pn’k; w_an eikx+kz) , (16)
Vy,= eiwtniw ein().t VZ,n,keikX+an
_ipn,k; —3 eikx+kz>. 17

Substituting Eqgs.(16) and (17) into Eqg. (7), we obtain

Also, as we have externally imposed oscillations, let us look’x,n k= (idn/K) vz k @and

for the solutions of the perturbed system of equati@snd

(8) in the form of Floquet series over the time variable. Sum-
marizing all the remarks made above, for the Fourier com-

ponents we have

Vlzefia)t z ei”mvn,k(z)eikx, (9)

n=—o

©

plze—iwt 2 eimﬂtpm'k(z)eikxl

m=—o

(10

From EQ.(8), pmk(2) = Pm€<4(z<0), and for the velocity
componenty, we have, from Eq(6),

(—ilw+inQ)vy (2

1 7 vy nK(2)
=— ;|kpn,kek2+ oL K2y 0 (2)+ # :
(13)
The general solutions of Eq11) are as follows:
0 k ekZ
Vx,n,k(z) =Vynk€ "t pn,k; o—nQ’ (12
, . (NQ—w)|"?
g,=| k“+ip—| , Req,>0. (13

o]
i i - On i
V=€ iwt 2 emm(l ?Vz,n,kelkx+qnz

n=—o

k
n’k; w—n

(18

+ p eikx+kz)_

Now we need to take boundary conditio@ and (5) into
account. Presuming that the perturbation amplitude is small
compared to the wavelength, we may put0 into the
boundary conditiofEq. (5)] and finally obtain

(NQ)— w)

nQ—ow
2+|72—

pn,k:i 2Kk PVznk- (19

Condition(4), with the same assumption of small amplitude,
can be rewritten in the linear approximation as follows:

(?V]_Z
Jz

=—Polz=0- (20

z=0

_p0|z={_ pllz:o+277

Here ¢ is the displacement of the particles along thaxis.
Making use of Eq(19) we can rewrite Eq(20):
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. I’]Q—w e nQ_ 2
S (nQ—w)(Z‘l‘l—kz—) 2 (2+|p—2w>
0= —g ot E gin®t v pv gikx n=—o nk
0 2k znk 12 2
A ) ap ot
% —4| 1+ip 2 — 3| {ne"
. . . nk n°k? 7™
+27]e7|wt E emeann I(elkx
" N
n0— o ZnZZ_m e'“mwcos(ﬂt)gn,k. (24
) (nQ_(I)) 2+| sz )
_ iwt inQt Designating
2nie n;w e 5K
n0-ow\?  nO—w\?
K2 . Flo—nQ)=|2+ip 2 —4| 1+ip 2
Xpvani s o Tng € PLOT £ cot Qe (21 7 7
9 25
7]2k31
Now we should take into account thai,=d{/dt~=d{/dt, we can rewrite Eq(24) as
and, in the vicinity of the surface=0, e
> €"F(0-nQ)¢nk
n=-—ow
b= a0t i einftgikyj ®—nQ ” 2 802 @i
1z = 27]k2 z,n,k1 _ Zx eant 772k3 5 gn,k:O-
(22 "
(26)
+ o . . . .
(et S gnftgike, Vznk Reindexing the subscripts, we obtain
n=-—o 2k? o £,0%p?
- 2, @M o) S g (Gt dniad | =0,
:e—iwt 2 einﬂteikx§n]k' (27)
n=—w
Condition (27) is certainly satisfied if, for alln=(—cc,
+ ),
1kt Flo—nQ) L 1+ =0, 28
Vynk= _szzgn,k- 23) Pln-1k (o )n—1kT ¥ln+1k (28
g where y=— —gogzpz (29)
Y= 2723
Substituting Eqs(22) and(23) into Eq.(21), we finally ob-  The system of algebraic equatiof®8) has a nontrivial so-
tain lution £, i if
¢y Flo—2Q) i 0 0 0 0
0 v Flw—Q) v 0 0 0
Det] O 0 i F(w) i 0 0| =0 (30
0 0 0 ¢y  Flo+Q) v 0
0 0 0 0 v Flo+2Q) o

Therefore, the sought-after dispersion equation in our problem is presented in the form of an infinite det¢Egn@].

Up to this moment our consideration was similar to the research of{ RefHowever, in our further analysis let us proceed
by further transforming the infinite determindiiq. (30)] and extracting the variable to a simple trigonometric function.
This would allow one to avoid a numerical inversion of the matrix performed in [Béfor solving the eigenvalue problem.
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Ill. HIGH FREQUENCY —-SMALL AMPLITUDE L5 T T T ToE T
EXTERNAL OSCILLATIONS o -7 -
The form[Eq. (30)] of the dispersion equations is already » 7 .
convenient for considering high frequency forced external tr 7 )l
oscillations, Q> |w|. For further approximations we will e
also use dimensionless frequencies and characteristic scale LT T T
namely, ®=w/w,, k=k/k,, Q=0Q/w,, and E,=£&K,, o5 2 AN )
where £ —
\ 20 10 \
2 1/3 2\ 1/3 !
g°p gp 0
wvz(_) ' kv_( 7 ) . (31)
n n
20
Under the above-mentioned condition of high one can 05 . ) s .
rewrite Eq.(25) (for n#0): 0 0.5 1 1.5 2. 2.5 3 F
~\2 ~\ 12 o )
nQ nQ FIG. 2. Example of the spectrum(k) in the small amNplltude—
Flo—nQ)~| 2+i — —4| 141 porl o (32 high frequency limit for small wave numbers. Hedg=0.1
k k k [(£€0k) max=0.3]. Equation(36) is used for solid lines, and asymp-
tote (37) for dashed ones. Numbers correspond to different values
and also ~
of Q.
Eoﬁz ko
g=— (33 . 202 12
K3 y~V\k|1 7 ot (37)

For small amplitudes~§0T<<1 we may comparelF(w Therefore, externally imposed oscillations do reduce the in-

—nQ)| and|y at large (<2<Q) and short k2>Q) wave-  Stability growth rate below the classical RT Va|Ue=\/:

lengths of the perturbations. In both cases we can satisffiowever, as we considefok<1, a remarkable instability
|F(0—nQ)|>|y|, Yn#0, and may use only three central attenuation can be achieved only for rather high amplitudes

rows of the determinan30):

Flo—Q) o 0
Detl 1 F(w) v
0 v Flot+Q)

=F(o—-Q)F(0+0Q)
1

of the acceleration field gosd mac= &Q%0>0.

This situation is illustrated by Fig. 2. The function(k)
[that is, the maximum Re of solutions of E@6)] is pre-

sented forgo 0.1 and several values @t. Starting from

somek (k=1 for ) =0) we have an additional negative root
(y<—0.5, not showjy which does not represent instability.

Also is plotted the asymptote dependenig. (37)] (for Q

”:o, (34) =0 it corresponds to the classical value in incompressible
fluid).
In the same manner, for the limit of short wavelengths,

>(), we have the following asymptote from E¢82) and

O v R

Fork?<(), Eq (34) can be further simplified since we have, 2

0?2 Y
FloxQ)~F(xQ)~—- —. (35 1
k* 02
Designatingy=—i® and using Eqgs(34) and(35) together,
we can find a final dispersion equation of the form
02
2 1/2 g
2+12 —4<1+~12) —~—3+2 f -0. (36 o4
k k k k 08
One can find an asymptotic expression of E2p) for very B
proximation appears in the case of low viscosify»0, as it ~ Solutions(34) (dotted curvg, and(36) (dashed curvg £,~0.18 and
should be: 0=10.6.
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1 3 §2§4 31 IV. EXACT SOLUTION OF THE DISPERSION EQUATION
Yy~ —~( -— 3—3— —~—3) : (38 In order to solve Eq(30), we will use the method devel-
2k 16 8%k oped in Refs[6,7], and based on the method of Hill]. First

of all, let us draw our attention to the fact that the equation
F(wg) =0 [see Eq(25) and Fig. g gives the RT instability

and see again the effect of the instability attenuation witH{n viscous fluid[4]. If we impose additional forced oscilla-

. . tions, we will not have the same solution, and hence
respect to the classical viscous spectrym; 1/2k, at least F(@wuio) #0. In a similar way we can presume that

for ~§0§2> 1. Finally, in order to examine the whole area of n() + w, (except maybe for some particular valueskpf
&0, k and Q, we need to come back to the full infinite Thus we can divide each row of the determinfig. (30)]

determinan{Eg. (30)]. by the corresponding diagonal teff{w—n():

4 b

Flo—2Q) ! Flw—2Q) 0 0 0

4 4
0 Flo—Q) ! Flo—Q) 0 0 0
D(w)=Deff 0 0 %)) 1 %)) 0 o |. ©9
4 b

0 0 0 Flo+Q) ! F(y+Q)
0 0 0 d d

Flw+29) ! Flw+29Q)

Since the diagonal terms are all equal to unity, and the adjacent to diagonal terms are decreasing in valtidims 1/
accordance with Eq25)], the determinant is converging.

Let us now consider determinaf89) as a function of complex variable. Since the determinant converges, this function
is analytic everywhere in the complex area, but the nulls of the functdrs—n()=0. In this case the poles & (w)
originate from the terms E{w—n()), and in order to find the main part 8f(w) we need to sum up first over all the roots
wq of the equatiorF(wg) =0 and then over all the rows of the matrix. Thus

+ 0
D(w)=¢(0)+> 2 -z ! Dy(wo), (40)
o [0 (wo—n)]

Jw B
w—wo

where¢(w) is an integral function an®(w,) is the determinant of the matrix of EG39) with a regularized row containing
a peculiarity atw = wq:

Flog-20)  © Flag-20)  ° 0 0 0
0 F(w:j—m F(w;p—m 0 0 0
D, (wg)=Det 0 0 1 0 1 0 0
° ° °  fegm ' Fesw O
° ° ° °  fuerz ' Freem

(41)
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4 A Q/w, =3.17 Q
04
16.0
02 -
‘\\\\\\ S - = —en = .
s eI At 3 > y <0
WS ,’,/,///// 18.5
-02 “\\\\\\,//// ////,/
Wy
\N\s o 27
04 W\~ LSS N Qle, =714
I\ /,’,’ 16.0
-06 “'l‘./ F¥
(a) 13.5
W (a) 0 2 4 5 8 k
- 7.5 y <0
(b) 5.0
2.3
| (b) o 2 ; e k
Q
2.55
2.30
y <0
(c) 2.05
FIG. 4. SolutionSy(~k) of (43): (a) £,=0.4; Q varies from 3.17 1.80
to 7.14 with the step of 0.4b) Q=5; &, varies from 0.3 to 1.3(c) L e
6:5; &, varies from 1.3 to 2.3.
1.30
The functiong(w) tends to unity atw— o [sinceD(w)—1
at w—>]. Due to the Liouville theorem, this function is L05
equal to unity in all the complex area. Then, reminding our- o e .
selves of the Mittag-Leffler decomposition of meromorphic © 75 1 2 3 4 sk
functions to series, we may represent Etp) in the form FIG. 5. Regions of stability at different wave numbers for small,
W 7 [ mo—awg) intermediate, and highiy: (@) £,=0.1. (b) €,=1. (c) €,=3.0.
D(w)=1+, ——— cot()Dl(wO)
P IF(w)dw| _ Q . . . .
w=wg Using Eq.(31) we will calculate the instability spectrum
=0. (42)  from resulting dispersion relatidiEq. (42)] in a dimension-
less form:
As we can see, the frequenaywe are looking for is placed
now as an argument of a simple trigonometric function: the iy Y=o
cotangent. The determinabt;(w,) does not depend on the  1+-—2 ———— cthl = D1(y0)=0,
solutionw(k), and rapidly converges. This means that for a Q 7 IF(yldy =
givenk we can easily find the corresponding growth rate. (43
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where

y 1/2 1
1+~ =, (44)
k? k®

2
F<y>=<2+~1) 4
k2

and ¢ comes from Eq(33).
Again, as in Sec. lll, the exact solutidiq. (43)] takes

simpler form for high frequency external oscillations, i.e.,

Q>9|, |0/, and henceds|y—y,|. Only three central
rows of D;( o) contribute wherk?<Q or k%> (), since in
these casel-(wy—nQ)|>|y|. Therefore,
1 ‘ 1 1
Fay \Flor ) Flyo=0))
(45)

Y= vo— 22,

Y0

We recall that the sum in Eq45) should be calculated for
the roots of equatior(vy,)=0. The second root appears

only fork=1 and is equal toy,~ — 0.91%>. It can be easily
seen that for this rootF/dy|, = 1/k?, while for the first root
andksy, we havedF/dy|, xyo/k*. Thus fork<1 andk
>1 one can consider only the firgtositive root y, in Eq.

(45), which has asymptoteg,— \/E and y,— 1/ for these
two cases correspondingly.

PHYSICAL REVIEW E63 036303

Let us now examine the behavior of the exact spectrum
v(k), resulting from Eq(43). A gradual increase of the fre-
quency causes the dispersion curve to plunge to an area of
negative values of the growth rate, making the window of

stability larger and largefFig. 4a)]. However, ifQ) is too
large, additional peaks tend to appear on the dispersion
curve. The value ofy in the area of these peaks can exceed
the growth rate of the original instability witf=0, and
hence the parametric oscillations even cause an antidamping
of the perturbations. The influence of the dimensionless am-
plitude parameteEo is in certain way similar—if it is large
enough, the external oscillations become a destabilizing fac-
tor in some region of wave numbefBigs. 4b) and 4c)].
Finally, the exact solutiohEq. (43)] allows one to draw the
areas of stability in the form of Fig. 5.

V. LIMIT CASE OF IDEAL INCOMPRESSIBLE FLUID

An interesting limit case of the problem is the transition to
the case of zero viscosity, i.ep— 0. This transition, while
keeping(}/w, constant, corresponds fd— . It is in fact
the case of an ideal incompressible fluid in a gravitational
field, i.e., the case of classic Rayleigh-Taylor instability. The
only difference is that we consider it in the oscillating grav-
ity field. The problem was investigated previously, starting
in Ref. [9]. We are using it as a demonstration of our ap-
proach to transforming the determinant. One can apply the

For small deviations of the growth rate from the value of same technique of regularization of an infinite determinant as

v0>0, such that one may writ&(y)~dF/dvy| vl Y~ v0),

Eqg. (45 immediately coincides with Eq.34). In addition,
for arbitrary (y— o)/ v, EQ. (45) can be approximated for

k2<0 or k>0, and exactly repeats asymptot&¥) and

(38). Comparison of the exact solution with previously found
approximations is presented in Fig. 3. Good approximation

of the exact solution appears in the area of small and leyge
in full agreement with the discussion of Sec. IIl.

D1(ivo)
1 1 1
F(iyo—2Q) F(iyo—2Q)
¥

[ S — 1

° Fip-20)
=Det 0 0 1
0 0 0
0 0 0

and also

for the problem of a viscous fluid. The result can be obtained
in a form close to Eq(42),

i i i
s 7 o] i 22— 5 w2 i 22Dt
=0, (46)
where
0 0 0 0
v
0 0 0
Flivo—Q)
0 1 0 0 ,
4 4 0
F(iyo+Q) F(iyo+Q)
__v __v
F(iyot2Q) F(iyot2Q)

(47)
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w2 QZ A L e Q= 0
')/0:\/k_g Flw)=1+ kg’ ¢:§0_ y """""""""""" . — Yrr =&k
g g
The corresponding dispersion curve f2%/g>1 is drawn S
in Fig. 6. At small wave numbers the growth rate is smaller I j
that of the “pure” RT instabilityy,. Then its imaginary part o A
is equal to zero, and finallfat largek) becomes higher than
vo- We note that this result can also be reformulated for the C/ :K

Kapitsa pendulunj2]. The problem of the pendulum will be
solved for arbitrary values of the attachment point oscillation k|G, 6. Dispersion curve for an ideal incompressible fluid im-

amplitudes, that are not small compared to the length of thgosed on external oscillations. The inset zooms in on the region of
pendulum. small wave numbers.

VI. CONCLUSION rameters of this “pumping” carefully, so that no inverse
destabilization effect occurs. A practical realization of this
In conclusion, the stability of a viscous fluid interface is method in liquids is obvious, and the effect was already ex-
analyzed for the case of an oscillating gravitational field. Aperimentally demonstrate@ee, e.g., Refd3,5]). One may
dispersion relation is derived in the linear approximation tojmagine a similar effect in magnetically accelerated plasmas
represent an infinite determinant of the Hill type. The appliedyith a frozen-in magnetic fiel®;,. If we consider a sharp
method of regularization of this determinant allows one topoundary(neglecting the effect of the magnetic field diffu-
f|nd the d|SperS|0n curve, and to determ|ne the Stab|l|ty re'sion) and an externa| acce|erating magnetic pressure having

gions for a broad range of parameters. Itis also shown that igscillations, the sum force could entail the desired variation
the limit of inviscid fluid (in analogy with the Kapitsa pen- ¢ the accelerationg<B2 (t)— B2,

dulum) the external oscillations lead to a resonant antidamp-
ing of short wavelength perturbations.

Thus the phenomenon of boundary surface oscillation can
potentially be used for the instability suppression in a certain  The work of one of the author@.l.) was supported by
region of wavelengths. However, one should choose the pasrant Nos. INTAS 97-0021 and RFBR 99-2-16659.
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