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Stability of a viscous fluid in an oscillating gravitational field

A. A. Ivanov and A. S. Chuvatin
Laboratoire de Physique des Milieux Ionise´s, Ecole Polytechnique, 91128 Palaiseau, France

~Received 7 March 2000; revised manuscript received 23 October 2000; published 23 February 2001!

The stability of the interface of a viscous incompressible fluid superimposed on a massless fluid is studied
for the case of an oscillating gravitational field. For the viscous case, the dispersion relation is shown to
represent an infinite determinant of the Hill type, which is investigated analytically. The method presented
allows one to find the whole dispersion curve of the instability and its asymptotics in an explicit form. The
stabilizing effect of the externally imposed oscillations leads to the appearance of stability windows on the
growth rate spectrum. Illustrations are given for the influence of all the parameters of the problem on this
effect.
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I. INTRODUCTION

The Rayleigh-Taylor~RT! instability was originally dis-
covered as the instability of the interface of two superi
posed fluids in a gravitational field. Theoretical interest
this phenomenon today is related to its appearance in a n
ber of physical objects both in space and laboratory flu
and plasmas@1#. The influence of various physical param
eters and processes on the RT growth rateg is often studied
in the light of finding a stabilizing effect which leads to
reduction of the value ofg, at least at given wavelengths.

One can note a similarity between the linear growth of
instability in incompressible fluids and the motion of an i
verted pendulum~a conventional mechanical pendulum co
sisting of a long rigid stick with a small heavy body attach
to its end!. Indeed, the motion of an incompressible flu
over a massless incompressible medium in a gravity fi
consists of interchanging the opposite volume parts ac
the interface. Furthermore, the expressions for the chara
istic frequencies of the RT~often called interchange! insta-
bility and the pendulum are alike,g5Agk andv5Ag/ l ~l is
the length of the pendulum!.

A well-known classic experiment for preventing an i
verted pendulum from falling was described in Ref.@2#. The
idea of the experiment was to make the point of attachm
of the pendulum to vibrate with a rather small amplitudej0 ,
but with a high frequencyV. The essential point here is t
make the effective changing gravity fieldgosc5j0V2 higher
than the original one,g. Further developing the analogy be
tween a pendulum of a fixed length and RT perturbations
a fluid of a given wavelength, we can expect an analog
effect in the case of two incompressible fluids.

The present paper analyzes the possibility of a reduc
of the instability growth rate in the region of intermedia
wavelengths for the case when the acceleration field is o
lating. To obtain a basic notion of the effect, a simple case
incompressible fluids is considered. The authors of Ref.@5#
already derived a dispersion relation for this stability pro
lem in the form of an infinite determinant. This determina
was further analyzed, mostly numerically, in order to fi
stability boundaries. As opposed to Ref.@5#, here we propose
an analytical method which allows one to obtain an expl
form of the dispersion relation and avoid a large amoun
numerical work.
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II. DISPERSION EQUATION FOR LINEAR INSTABILITY
GROWTH IN VISCOUS FLUID

Figure 1 illustrates the statement of the problem. T
incompressible nonmixing fluids are superimposed, both
them harmonically oscillating in a direction perpendicular
the interface. In practice, this situation can by realized
putting two liquids in a cylinder with rigid walls, and makin
this cylinder vibrate in the direction ofg. The corresponding
experiment was described in Ref.@3#. In the chosen frame o
reference the fluids are immobile as a whole, and the p
sure instantaneously compensates for the change of th
fective acceleration field. The axisZ is normal to the fluid
surface, and the axesX and Y are in the plane of the fluid
interface, so thatg5gez .

For growth rates of the surface perturbationg, exceeding
V, the forced oscillations effectively increase the initial gra
ity force g. Further analysis will be performed for the ca
when the instability boost at shorter wavelengths, cor
sponding to higher values ofg, is limited by the viscosity.
Also, to avoid tedious calculations, we will examine the ca
of a heavy fluid superimposed over a massless one.

For a viscous incompressible fluid in a noninertial fram
of reference

dv

dt
52

“p

r
1g1gosc1

h

r
¹v, ~1!

“•v50, ~2!

where we chooseugoscu5j0V2 cos(Vt).
The initial condition for Eqs.~1! and ~2! corresponds to

the equilibrium statev050, or

FIG. 1. General statement of the problem.
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p05r@g1j0V2 cos~Vt !#z1pext. ~3!

The boundary conditions are formulated as follows@4#:

S 2p12h
]nz

]z D U
surface

52pext, ~4!

S ]nx

]z
1

]nz

]x D U
surface

50 S ]ny

]z
1

]nz

]y D U
surface

50. ~5!

In a linear approximation Eqs.~1! and ~2! yield n5n01n1
for small perturbations of the velocity, andp5p01p1 for
the pressure.

]v1

]t
52

“p1

r
1

h

r
D1 . ~6!

¹•v150. ~7!

Taking the divergence of Eq.~6! and taking into account Eq
~7!, we obtain

Dp150. ~8!

Since the equilibrium system is homogeneous in the plane~x,
y!, we can make a Fourier transform over these variables
a result we will have corresponding Fourier components w
the wave vectork5(kx ,ky). In order to simplify our calcu-
lations further, let us change the directions of the axesx and
y, so thatk5kex and k5uku. In other words, we are thu
eliminating the unnecessary variabley from our problem.
Also, as we have externally imposed oscillations, let us lo
for the solutions of the perturbed system of equations~6! and
~8! in the form of Floquet series over the time variable. Su
marizing all the remarks made above, for the Fourier co
ponents we have

v15e2 ivt (
n52`

`

einVtvn,k~z!eikx, ~9!

p15e2 ivt (
m52`

`

eimVtpm,k~z!eikx. ~10!

From Eq.~8!, pm,k(z)5pm,ke
kz(z,0), and for the velocity

componentnx we have, from Eq.~6!,

~2 iv1 inV!nx,n,k~z!

52
1

r
ikpn,ke

kz1
h

r S 2k2nx,n,k~z!1
]2nx,n,k~z!

]z2 D .

~11!

The general solutions of Eq.~11! are as follows:

nx,n,k~z!5nx,n,ke
qnz1pn,k

k

r

ekz

v2nV
, ~12!

qn5S k21 ir
~nV2v!

h D 1/2

, Reqn.0. ~13!
03630
s
h

k

-
-

Condition Reqn.0 is necessary for the perturbations to d
appear atz→2`.

The same calculations fornz result in

nz,n,k~z!5nz,n,ke
qnz2 ipn,k

k

r

ekz

v2nV
. ~14!

Thus all the expressions for the pressure and velocity c
ponents are

p15e2 ivt (
m52`

`

eimVtpm,ke
ikx1kz, ~15!

n1x5e2 ivt (
n52`

`

einVtS nx,n,ke
ikx1qnz

1pn,k

k

r

1

v2nV
eikx1kzD , ~16!

n1z5e2 ivt (
n52`

`

einVtS nz,n,ke
ikx1qnz

2 ipn,k

k

r

1

v2nV
eikx1kzD . ~17!

Substituting Eqs.~16! and ~17! into Eq. ~7!, we obtain
nx,n,k5( iqn /k)nz,n,k and

n1x5e2 ivt (
n52`

`

einVtS i
qn

k
nz,n,ke

ikx1qnz

1pn,k

k

r

1

v2nV
eikx1kzD . ~18!

Now we need to take boundary conditions~4! and ~5! into
account. Presuming that the perturbation amplitude is sm
compared to the wavelength, we may putz50 into the
boundary condition@Eq. ~5!# and finally obtain

pn,k5 i

~nV2v!S 21 i
nV2v

nk2 D
2k

rnz,n,k . ~19!

Condition~4!, with the same assumption of small amplitud
can be rewritten in the linear approximation as follows:

2p0uz5z2p1uz5012h
]n1z

]z U
z50

52p0uz50 . ~20!

Herez is the displacement of the particles along thez axis.
Making use of Eq.~19! we can rewrite Eq.~20!:
3-2
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052e2 ivt (
n52`

`

einVti

~nV2v!S 21 i
nV2v

nk2 D
2k

rnz,n,ke
ikx

12he2 ivt (
n52`

`

einVtqnnz,n,ke
ikx

22h ie2 ivt (
n52`

`

einVti

~nV2v!S 21 i
nV2v

nk2 D
2k

3rnz,n,k

k2

r

1

v2nV
eikx2r@g1j0V2 cos~Vt !#z. ~21!

Now we should take into account thatn1z5dz/dt']z/]t,
and, in the vicinity of the surfacez50,

n1z5e2 ivt (
n52`

`

einVteikxir
v2nV

2hk2 nz,n,k ,

~22!

z52e2 ivt (
n52`

1`

einVteikxr
nz,n,k

2hk2

5e2 ivt (
n52`

1`

einVteikxzn,k ,

nz,n,k522
h

r
k2zn,k . ~23!

Substituting Eqs.~22! and ~23! into Eq. ~21!, we finally ob-
tain
03630
(
n52`

1` F S 21 ir
nV2v

hk2 D 2

24S 11 ir
nV2v

hk2 D 1/2

2
gr2

h2k3Gzn,ke
inVt

5 (
n52`

1`

einVt
j0V2r2

h2k3 cos~Vt !zn,k . ~24!

Designating

F~v2nV!5S 21 ir
nV2v

hk2 D 2

24S 11 ir
nV2v

hk2 D 1/2

2
gr2

h2k3 , ~25!

we can rewrite Eq.~24! as

(
n52`

1`

einVtF~v2nV!zn,k

2 (
n52`

1`

einVt
j0V2r2

h2k3

eiVt1e2 iVt

2
zn,k50.

~26!

Reindexing the subscripts, we obtain

(
n52`

1`

einVtS F~v2nV!zn,k2
j0V2r2

2h2k3 ~zn21,k1zn11,k! D50.

~27!

Condition ~27! is certainly satisfied if, for alln5(2`,
1`),

czn21,k1F~v2nV!zn21,k1czn11,k50, ~28!

where c[2
j0V2r2

2h2k3 . ~29!

The system of algebraic equations~28! has a nontrivial so-
lution zn,k if
ed
.
.

DetS • • • • • • •

c F~v22V! c 0 0 0 0

0 c F~v2V! c 0 0 0

0 0 c F~v! c 0 0

0 0 0 c F~v1V! c 0

0 0 0 0 c F~v12V! c

• • • • • • •

D 50 ~30!

Therefore, the sought-after dispersion equation in our problem is presented in the form of an infinite determinant@Eq. ~30!#.
Up to this moment our consideration was similar to the research of Ref.@5#. However, in our further analysis let us proce
by further transforming the infinite determinant@Eq. ~30!# and extracting the variablev to a simple trigonometric function
This would allow one to avoid a numerical inversion of the matrix performed in Ref.@5# for solving the eigenvalue problem
3-3
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III. HIGH FREQUENCY –SMALL AMPLITUDE
EXTERNAL OSCILLATIONS

The form@Eq. ~30!# of the dispersion equations is alread
convenient for considering high frequency forced exter
oscillations, V@uvu. For further approximations we wil
also use dimensionless frequencies and characteristic sc

namely, ṽ[v/vn , k̃[k/kn , Ṽ[V/vn , and j̃0[j0kn ,
where

vn[S g2r

h D 1/3

, kn[S gr2

h2 D 1/3

. ~31!

Under the above-mentioned condition of highV, one can
rewrite Eq.~25! ~for nÞ0!:

F~v2nV!'S 21 i
nṼ

k̃2
D 2

24S 11 i
nṼ

k̃2
D 1/2

2
1

k̃3
, ~32!

and also

c[2
j̃0Ṽ2

2k̃3
. ~33!

For small amplitudes,j̃0k̃!1, we may compareuF(v

2nV)u and ucu at large (k̃2!Ṽ) and short (k̃2@Ṽ) wave-
lengths of the perturbations. In both cases we can sa
uF(v2nV)u@ucu, ;nÞ0, and may use only three centr
rows of the determinant~30!:

DetS F~v2V! c 0

c F~v! c

0 c F~v1V!
D

5F~v2V!F~v1V!

3FF~v!2c2S 1

F~v1V!
1

1

F~v2V! D G50. ~34!

For k̃2!Ṽ, Eq. ~34! can be further simplified since we hav
from Eq. ~32!,

F~v6V!'F~6V!'2
Ṽ2

k̃4
. ~35!

Designatingg[2 i ṽ and using Eqs.~34! and~35! together,
we can find a final dispersion equation of the form

S 21
g

k̃2D 2

24S 11
g

k̃2D 1/2

2
1

k̃3
1

1

2
S j̃0Ṽ

k̃
D 2

50. ~36!

One can find an asymptotic expression of Eq.~36! for very
high wavelengths of the perturbations,k̃2!g ~the same ap-
proximation appears in the case of low viscosity,h→0, as it
should be!:
03630
l

les,

fy

g'Ak̃S 12
k̃

2
j̃0

2Ṽ2D 1/2. ~37!

Therefore, externally imposed oscillations do reduce the

stability growth rate below the classical RT valueg5Ak̃.
However, as we considerj̃0k̃!1, a remarkable instability
attenuation can be achieved only for rather high amplitu

of the acceleration field,ugoscumax[j̃0Ṽ
2g@g.

This situation is illustrated by Fig. 2. The functiong( k̃)
@that is, the maximum Re of solutions of Eq.~36!# is pre-

sented forj̃050.1 and several values ofṼ. Starting from
somek̃ ~k̃51 for V50! we have an additional negative roo
~g,20.5, not shown!, which does not represent instability

Also is plotted the asymptote dependence@Eq. ~37!# ~for Ṽ
50 it corresponds to the classical value in incompress
fluid!.

In the same manner, for the limit of short wavelength

k̃2@Ṽ, we have the following asymptote from Eqs.~32! and
~34!,

FIG. 2. Example of the spectrumg( k̃) in the small amplitude–

high frequency limit for small wave numbers. Herej̃050.1
@(j0k)max50.3#. Equation~36! is used for solid lines, and asymp
tote ~37! for dashed ones. Numbers correspond to different val

of Ṽ.

FIG. 3. Exact solutiong( k̃) ~solid curve! and the approximate

solutions~34! ~dotted curve!, and~36! ~dashed curve!; j̃0'0.18 and

Ṽ510.6.
3-4
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g'
1

2k̃
S 12

3

16

j0
2Ṽ4

k̃3
2

3

8

1

k̃3
D , ~38!

and see again the effect of the instability attenuation w
respect to the classical viscous spectrum,g51/2k, at least

for j̃0Ṽ2.1. Finally, in order to examine the whole area
j0 , k, and V, we need to come back to the full infinit
determinant@Eq. ~30!#.
03630
h

IV. EXACT SOLUTION OF THE DISPERSION EQUATION

In order to solve Eq.~30!, we will use the method devel
oped in Refs.@6,7#, and based on the method of Hill@8#. First
of all, let us draw our attention to the fact that the equat
F(v0)50 @see Eq.~25! and Fig. 2# gives the RT instability
in viscous fluid@4#. If we impose additional forced oscilla
tions, we will not have the same solution, and hen
F(vsolution)Þ0. In a similar way we can presume thatv
ÞnV1v0 ~except maybe for some particular values ofk!.
Thus we can divide each row of the determinant@Eq. ~30!#
by the corresponding diagonal termF(v2nV):
1/

on

ts
D~v!5Det1
• • • • • • •

c

F~v22V!
1

c

F~v22V!
0 0 0 0

0
c

F~v2V!
1

c

F~v2V!
0 0 0

0 0
c

F~v!
1

c

F~v!
0 0

0 0 0
c

F~v1V!
1

c

F~c1V!
0

0 0 0 0
c

F~v12V!
1

c

F~v12V!

• • • • • • •

2 . ~39!

Since the diagonal terms are all equal to unity, and the adjacent to diagonal terms are decreasing in value asn2 @in
accordance with Eq.~25!#, the determinant is converging.

Let us now consider determinant~39! as a function of complex variablev. Since the determinant converges, this functi
is analytic everywhere in the complex area, but the nulls of the functionsF(v2nV)50. In this case the poles ofD(v)
originate from the terms 1/F(v2nV), and in order to find the main part ofD(v) we need to sum up first over all the roo
v0 of the equationF(v0)50 and then over all the rows of the matrix. Thus

D~v!5w~v!1(
v0

(
n52`

1`
c

]F~v!

]v U
v5v0

@v2~v02nV!#

D1~v0!, ~40!

wherew~v! is an integral function andD1(v0) is the determinant of the matrix of Eq.~39! with a regularized row containing
a peculiarity atv5v0 :

D1~v0!5Det1
• • • • • • •

c

F~v022V!
1

c

F~v022V!
0 0 0 0

0
c

F~v02V!
1

c

F~v02V!
0 0 0

0 0 1 0 1 0 0

0 0 0
c

F~v01V!
1

c

F~v01V!
0

0 0 0 0
c

F~v012V!
1

c

F~v012V!

• • • • • • •

2 .

~41!
3-5
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The functionw~v! tends to unity atv→` @sinceD(v)→1
at v→`#. Due to the Liouville theorem, this function i
equal to unity in all the complex area. Then, reminding o
selves of the Mittag-Leffler decomposition of meromorph
functions to series, we may represent Eq.~40! in the form

D~v!511(
v0

c

]F~v!/]vU
v5v0

p

V
cotS p~v2v0!

V DD1~v0!

50. ~42!

As we can see, the frequencyv we are looking for is placed
now as an argument of a simple trigonometric function:
cotangent. The determinantD1(v0) does not depend on th
solutionv(k), and rapidly converges. This means that fo
given k we can easily find the corresponding growth rate

FIG. 4. Solutionsg( k̃) of ~43!: ~a! j050.4; Ṽ varies from 3.17

to 7.14 with the step of 0.4.~b! Ṽ55; j0 varies from 0.3 to 1.3.~c!

Ṽ55; j0 varies from 1.3 to 2.3.
03630
-

e

Using Eq.~31! we will calculate the instability spectrum
from resulting dispersion relation@Eq. ~42!# in a dimension-
less form:

11
pc

Ṽ
(
g0

1

]F~g!/]g
U

g5g0

cthS p
g2g0

Ṽ
D D1~g0!50,

~43!

FIG. 5. Regions of stability at different wave numbers for sma

intermediate, and highj0 : ~a! j̃050.1. ~b! j̃051. ~c! j̃053.0.
3-6
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STABILITY OF A VISCOUS FLUID IN AN . . . PHYSICAL REVIEW E63 036303
where

F~g!5S 21
g

k̃2D 2

24S 11
g

k̃2D 1/2

2
1

k̃3
, ~44!

andc comes from Eq.~33!.
Again, as in Sec. III, the exact solution@Eq. ~43!# takes

simpler form for high frequency external oscillations, i.

Ṽ@ugu, ug0u, and henceṼ@ug2g0u. Only three central

rows of D1(g0) contribute whenk̃2!Ṽ or k̃2@Ṽ, since in
these casesuF(v02nV)u@ucu. Therefore,

g2g02c2(
g0

1

]F~g!/]gU
g0

S 1

F~g01V!
1

1

F~g02V! D50.

~45!

We recall that the sum in Eq.~45! should be calculated fo
the roots of equationF(g0)50. The second root appea
only for k̃>1 and is equal tog0'20.912k̃2. It can be easily
seen that for this root]F/]gug0

}1/k̃2, while for the first root

and k̃@g0 we have]F/]gug0
}g0 / k̃4. Thus for k̃,1 andk̃

@1 one can consider only the first~positive! root g0 in Eq.

~45!, which has asymptotesg0→Ak̃ andg0→1/2k̃ for these
two cases correspondingly.

For small deviations of the growth rate from the value
g0.0, such that one may writeF(g)']F/]gug0

(g2g0),
Eq. ~45! immediately coincides with Eq.~34!. In addition,
for arbitrary (g2g0)/g0 , Eq. ~45! can be approximated fo

k̃2!Ṽ or k̃2@Ṽ, and exactly repeats asymptotes~37! and
~38!. Comparison of the exact solution with previously fou
approximations is presented in Fig. 3. Good approximat
of the exact solution appears in the area of small and largk̃,
in full agreement with the discussion of Sec. III.
03630
,

f

n

Let us now examine the behavior of the exact spectr
g( k̃), resulting from Eq.~43!. A gradual increase of the fre
quency causes the dispersion curve to plunge to an are
negative values of the growth rate, making the window

stability larger and larger,@Fig. 4~a!#. However, if Ṽ is too
large, additional peaks tend to appear on the dispers
curve. The value ofg in the area of these peaks can exce
the growth rate of the original instability withV50, and
hence the parametric oscillations even cause an antidam
of the perturbations. The influence of the dimensionless a
plitude parameterj̃0 is in certain way similar—if it is large
enough, the external oscillations become a destabilizing
tor in some region of wave numbers@Figs. 4~b! and 4~c!#.
Finally, the exact solution@Eq. ~43!# allows one to draw the
areas of stability in the form of Fig. 5.

V. LIMIT CASE OF IDEAL INCOMPRESSIBLE FLUID

An interesting limit case of the problem is the transition
the case of zero viscosity, i.e.,h→0. This transition, while
keepingV/vn constant, corresponds toV→`. It is in fact
the case of an ideal incompressible fluid in a gravitatio
field, i.e., the case of classic Rayleigh-Taylor instability. T
only difference is that we consider it in the oscillating gra
ity field. The problem was investigated previously, starti
in Ref. @9#. We are using it as a demonstration of our a
proach to transforming the determinant. One can apply
same technique of regularization of an infinite determinan
for the problem of a viscous fluid. The result can be obtain
in a form close to Eq.~42!,

sin2S p
v

V D2sin2S p
ig0

V D2
p

4
c

ig0

V
sinS 2p

ig0

V DD1~ ig0!

50, ~46!

where
D1~ ig0!

5Det1
• • • • • • •

c

F~ ig022V!
1

c

F~ ig022V!
0 0 0 0

0
c

F~ ig022V!
1

c

F~ ig02V!
0 0 0

0 0 1 0 1 0 0

0 0 0
c

F~ ig01V!
1

c

F~ ig01V!
0

0 0 0 0
c

F~ ig012V!
1

c

F~ ig012V!

• • • • • • •

2 ,

~47!

and also
3-7
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g05Akg F~v!511
v2

kg
, c5

j0V2

g
.

The corresponding dispersion curve forj0V2/g.1 is drawn
in Fig. 6. At small wave numbers the growth rate is sma
that of the ‘‘pure’’ RT instabilityg0 . Then its imaginary part
is equal to zero, and finally~at largek! becomes higher than
g0 . We note that this result can also be reformulated for
Kapitsa pendulum@2#. The problem of the pendulum will be
solved for arbitrary values of the attachment point oscillat
amplitudes, that are not small compared to the length of
pendulum.

VI. CONCLUSION

In conclusion, the stability of a viscous fluid interface
analyzed for the case of an oscillating gravitational field.
dispersion relation is derived in the linear approximation
represent an infinite determinant of the Hill type. The appl
method of regularization of this determinant allows one
find the dispersion curve, and to determine the stability
gions for a broad range of parameters. It is also shown tha
the limit of inviscid fluid ~in analogy with the Kapitsa pen
dulum! the external oscillations lead to a resonant antidam
ing of short wavelength perturbations.

Thus the phenomenon of boundary surface oscillation
potentially be used for the instability suppression in a cert
region of wavelengths. However, one should choose the
03630
r

e

n
e

d

-
in

-

n
n
a-

rameters of this ‘‘pumping’’ carefully, so that no invers
destabilization effect occurs. A practical realization of th
method in liquids is obvious, and the effect was already
perimentally demonstrated~see, e.g., Refs.@3,5#!. One may
imagine a similar effect in magnetically accelerated plasm
with a frozen-in magnetic fieldBin . If we consider a sharp
boundary~neglecting the effect of the magnetic field diffu
sion! and an external accelerating magnetic pressure ha
oscillations, the sum force could entail the desired variat
of the acceleration,g}Bext

2 (t)2Bin
2 .
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FIG. 6. Dispersion curve for an ideal incompressible fluid im
posed on external oscillations. The inset zooms in on the regio
small wave numbers.
7

A

@1# D. H. Sharp, Physica D12, 3 ~1984!.
@2# L. D. Landau and E. M. Lifchitz,Physique The´orique, Vol. 1.

Mecanique~Mir, Moscow, 1989!, Chap. 5, pp. 147–149.
@3# G. H. Wolf, Z. Phys.227, 291 ~1969!.
@4# L. D. Landau, and E. M. Lifchitz,Hydrodynamics, Course of

Theoretical Physics Vol. 6~Mir, Moscow, 1989!.
@5# K. Kumar and L. S. Tuckerman, J. Fluid Mech.278, 49

~1994!.
@6# A. V. Baitin and A. A. Ivanov, Pis’ma Zh. Eksp. Teor. Fiz.58,
389 ~1994! @JETP Lett.59, 416 ~1994!#.
@7# A. V. Baitin and A. A. Ivanov, Fiz. Plazma21, 507 ~1995!

@Plasma Phys. Rep.21, 479 ~1995!#.
@8# E. T. Whittaker and G. N. Watson,A Course of Modern Analy-

sis ~Cambridge University Press, Cambridge, England, 192!,
Pts. 1 and 2

@9# T. B. Benjamin and F. Ursell, Proc. R. Soc. London, Ser.
225, 505 ~1954!.
3-8


